Proteomic Identification of Calumenin as a G551D - CFTR Associated Protein

نویسندگان

  • Ling Teng
  • Mathieu Kerbiriou
  • Mehdi Taiya
  • Sophie Le Hir
  • Olivier Mignen
  • Nathalie Benz
  • Pascal Trouvé
  • Claude Férec
چکیده

Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biophysical Characterisation of Calumenin as a Charged F508del-CFTR Folding Modulator

The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflamm...

متن کامل

Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.

CF (cystic fibrosis) is caused by mutations in CFTR (CF transmembrane conductance regulator), which cause its mistrafficking and/or dysfunction as a regulated chloride channel on the apical surface of epithelia. CFTR is a member of the ABC (ATP-binding-cassette) superfamily of membrane proteins and a disease-causing missense mutation within the ABC signature sequence; G551D-CFTR exhibits defect...

متن کامل

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Potentiators Protect G551D but Not ΔF508 CFTR from Thermal Instability

The G551D cystic fibrosis transmembrane conductance regulator (CFTR) mutation is associated with severe disease in ∼5% of cystic fibrosis patients worldwide. This amino acid substitution in NBD1 results in a CFTR chloride channel characterized by a severe gating defect that can be at least partially overcome in vitro by exposure to a CFTR potentiator. In contrast, the more common ΔF508 mutation...

متن کامل

Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes.

The cystic fibrosis transmembrane conductance regulator (CFTR) in addition to its well defined Cl(-) channel properties regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and non-epithelial cells, whereas the presence of ENaC increases CFTR functional expression. This interregulation is reproduced in Xenopus oocytes where both the open probab...

متن کامل

P-192: The Study of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations and Polymorphisms in Iranian Patients with Mayer Rokitansky Kuster Hauser Syndrome

Background: Mayer - Rokitansky - Kuster - Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. Congenital anomaly of the female genital tract, estimated to occur in approximately 1 in every 5,000 females. It is caused by a failure of deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012